

Decay of the Transient Cu_B-CO Complex Is Accompanied by Formation of the Heme Fe-CO Complex of Cytochrome *cbb*₃-CO at Ambient Temperature: Evidence from Time-Resolved Fourier Transform Infrared Spectroscopy

Stavros Stavrakis, Konstantinos Koutsoupakis, Eftychia Pinakoulaki, Andrea Urbani,^{†,‡} Matti Saraste,[†] and Constantinos Varotsis* Department of Chemistry, University of Crete, 71409 Heraklion, Crete, Greece

Received August 31, 2001; Revised Manuscript Received February 19, 2002

The microaerobic cbb_3 -type cytochrome c oxidase isolated from Pseudomonas stutzeri is an isoenzyme in the family of cytochrome c oxidases (CcO).^{1a,b} It contains three c-type low-spin hemes, one low-spin *b*-type heme, and a heme b_3 -Cu_B binuclear center.^{2a} The structural characteristics of the binuclear center in cbb_3 is unique when compared to those of aa_3 -type oxidases; it lacks the hydroxyethylfarnesyl side chain and the highly conserved among the heme-copper oxidases tyrosine 244, both of which have been proposed to play a crucial role in the properties of the binuclear center.^{2a} The complex catalyzes the reduction of molecular oxygen by oxidation of cytochrome c and contributes to the proton gradient across the cytoplasmic membrane. The resonance Raman studies of the fully reduced^{2b} and CO-bound³ form of *cbb*₃ oxidase have revealed several structural characteristics of the heme pocket, including an indication, from the frequencies of the Fe-CO and Fe-C-O that the binuclear center has a unique active site with a pocket more open than that in other heme-copper oxidases. Therefore, data on the photodynamics of the CO-bound adduct of cytochrome cbb_3 in conjunction with those of the aa_3 -type oxidase can be interpreted to yield specific information concerning electronic and heme/Cu_B geometric properties, and heme/Cu_B-axial ligand bonding interactions. The time-resolved FTIR data reveal that in *cbb*₃-type oxidase the decay of the transient Cu_B-CO complex is concurrent with the formation of the heme b_3 -CO complex, and the $\nu(CO)$ of Cu_B at 2065 cm⁻¹, despite the lack of the cross-link tyrosine 244, is similar to that observed in cytochrome $aa_3^{4,5}$ and cytochrome bo₃.⁶ The former observation contrasts sharply with the well-known behavior of CO recombination to the heme Fe of cytochrome aa_3 - and bo_3 -type oxidases.⁷⁻¹⁰

We detect a single band in the FTIR spectrum of the CO-bound cbb_3 which has carbon isotopic sensitivity (Figure 1A). We assign the band at 1956 cm⁻¹ to the C–O stretching mode of heme b_3 –CO. In the ¹³CO-bound derivative this peak shifts to 1913 cm⁻¹ (Figure 1B). The frequency of this CO mode is independent of H₂O/D₂O exchanges (Figure 1C) and very close to those that have been reported for the CO adducts of the *aa*₃-type oxidases^{4,5,7,8,10-14} and *bo*₃-type,⁶ but 6 cm⁻¹ higher than that previously reported for the CO adduct of *cbb*₃ from *Rh. capsulatus* at 15 K.^{2a} The FTIR results along with the resonance Raman (RR) data³ establish that the β -form is the stable conformation. The broad bandwidth of the CO mode in *cbb*₃ (fwhm = 13 cm⁻¹) is an indication of the wide distribution of allowed CO conformations. Similar observations were detected in the β -form of the *aa*₃-type oxidases.¹³

Figure 1. FTIR spectra of the CO bound form of fully reduced cytochrome cbb_3 at 293 K. (A) pD 7.5, (B) cbb_3^{-13} CO, pD 7.5, (C) pH 7.5. Enzyme concentration was 1 mM, the path length, 30 μ m, and spectral resolution, 4 cm⁻¹.

Figure 2. (A) Time-resolved step-scan FTIR difference spectra of the CObound form of fully reduced cytochrome cbb3 (pD 7.5) at 10, 25, 50, 100, 150, 200, 250, 300, 400, 500, 750, 1000, and 1300 µs after CO photolysis, obtained with spectral resolution of 8 cm⁻¹ and 5 μ s time resolution. Total number of slices was 800, with 40 slices before and 760 after the laser firing. A total of 10 co-additions per retardation data point was collected. The 355-nm pulse from a Nd:YAG laser (7-ns width, 7 Hz) was used as a pump light (3 mJ/pulse) to photolyze the cbb3-CO oxidase. Inset: Kinetic analysis of the 2065 cm⁻¹ ($\nu_{CO(CuB)}$, squares) and 1956 cm⁻¹ ($\nu_{CO(Fe)}$, circles) modes vs time after CO photolysis. The curves are three parameter fits to the experimental data according to first-order kinetics. (B) Time-resolved step-scan FTIR difference spectra of the photolyzed CcO-CO complex at 30, 40, 50, 75, 100, 150, 250, 375, 500, 625, 750, 875, 1000, 1750, 2500, 3000, and 3765 μ s. Insets: (a) Plot of the 1965 cm⁻¹ (ν_{CO} (Fe), squares) mode vs time after CO photolysis. (b) Step-scan difference spectra of the photolyzed CcO-CO complex in H₂O (solid line) and D₂O (dot line) at $5 \ \mu s.$

Figure 2A shows the time-resolved FTIR spectra ($t_d = 5 \ \mu s$ to 1.3 ms, 8 cm⁻¹ spectral resolution) of fully reduced cbb_3 -CO after CO photolysis by a nanosecond laser pulse (355 nm). Upon photolysis, CO is transferred from heme b_3 to Cu_B. The negative peak at 1956 cm⁻¹ arises from the photolyzed heme b_3 -CO complex, and the positive peak that appears at 2065 cm⁻¹ ($t_d = 5 \ \mu s$) is attributed to the C-O stretch (ν_{CO}) of Cu_B as found under white light illumination at low-temperatures,^{2a} and its intensity persists up to 1 ms. The frequencies of the C-O modes of Cu_B at 2064 and 2042 cm⁻¹ in the *aa*₃-type oxidases are associated with

^{*} To whom correspondence should be addressed: E-mail: varotsis@edu.uoc.gr. Fax: 30-810-393601.

⁺ European Molecular Biology Laboratory, Meyerhofstrasse 1, Postfach 102209, D-69012 Heidelberg, Germany.

[‡] Clinical Biochemistry Laboratory, Ospedale del Bambino Gesu' IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.

the α - and β -forms, respectively.^{11,13} Thus, the frequencies of the modes involving CO in *cbb*₃ allows the protein to fall on the ν (Fe–CO) versus ν (C–O) correlation curve for the β -form but with a corresponding $\nu(CO)$ of Cu_B of the α -form. Moreover, these data suggest that despite the absence of the cross-link in cbb_3 , the frequencies of the $\nu(CO)$ we detect are similar to the corresponding frequencies found in CO-bound aa3-4,5,7,11 and bo3-type6,9 oxidases. The decay of the 2065 cm⁻¹ peak ($t_{1/2} = 120 \pm 16 \ \mu s$) and the development of the 1956 cm⁻¹ peak ($t_{1/2}$ = 144 ± 28 µs) suggest that the formation of the Fe-CO complex is concurrent with the decay of the Cu_B-CO complex. Moreover, the intensity ratio of Fe-CO/Cu_B-CO (2.15) remains constant for all data points, and thus we conclude that no fraction of CO escapes the binuclear center at 293 K.

Infrared and UV-vis experiments of CO-bound aa₃ have shown that CO dissociates from Cu_B on a microsecond time scale ($k_{-1} =$ $5 \times 10^5 \text{ s}^{-1}$), and a thermal equilibrium between Cu_B-bound and "free" CO in solution ($K = 87 \text{ M}^{-1}$) is established.^{7,8,10} The CO, however, does not return to heme a_3 for milliseconds ($k_2 = 1030$ s⁻¹).^{7,8,10} Figure 2B shows the time-resolved FTIR spectra ($t_d = 5$ μ s to 4 ms, 8 cm⁻¹ spectral resolution) of mammalian fully reduced aa_3 -CO after CO photolysis in D₂O. We detect no intensity changes of the 1965 cm⁻¹ peak from $t_d = 5-750 \,\mu s$ which implies the lack of CO rebinding to heme a_3 (Figure 2B, inset a). At times longer than 750 μ s the intensity increase of the 1965 cm⁻¹ peak signals the onset of ligand rebinding to heme a_3 . This behavior is analogous to that previously observed by Dyer et al.^{7,8} and Ondrias et al.¹⁶ The former authors proposed that on the time scale CO leaves Cu_B ($t_{1/2} = 1.5 \ \mu s$) there are no intrinsic heme barriers to recombination with heme a_3 because typical geminate recombination rates are nanoseconds. Thus, another barrier must form which prevents CO recombination prior to 1 ms, and either a local protein conformational change or the binding of an endogenous ligand which blocks the distal ligation site were suggested as possible candidates. Time-resolved ps RR experiments¹⁷ have demonstrated that heme a_3^{2+} is five-coordinate, high-spin, with proximal histidine ligation to the heme at the earliest times following CO photodissociation, and thus, no endogenous ligand blocks the distal binding site of heme a_3 . The 5 μ s spectra in H₂O and D₂O, shown in inset b, demonstrate the absence of peaks associated with C-O modes of Cu_B (~2065 cm⁻¹). Thus, the $t_{1/2}$ of Cu_B-CO in CcO, in contrast to that reported from the photostationary experiments in $D_2O_{,5}^{,5}$ is less than 5 μ s in both H₂O and D₂O.^{7,10}

The mechanism proposed for the dynamics of CcO proceeds according to the following scheme:

His−Fe²⁺−CO, Cu_B<sup>+
$$h\nu$$</sup> {His−Fe²⁺}*, Cu_B⁺−CO →
CO (s), Cu_B⁺, His−Fe²⁺ → Fe²⁺−CO, Cu_B⁺

It involves a state denoted by an asterisk that represents a nonequilibrium state of the heme a_3 state characterized by an upshifted Fe-his stretching vibration.¹⁶ The transient heme a_3 state species relaxes to the equilibrium-reduced species at times >10 μ s.¹⁶ The Cu_B-CO complex is fully developed within 1 ps after photolysis from heme a_3 demonstrating the absence of activation barriers to the CO transfer from heme a₃ to Cu_B.⁸ The decay of the Cu_B-CO complex (~1.5 μ s) is followed by the equilibration of Cu_B-CO with CO in solution which occurs with a rate constant of $\sim 7 \times 10^5 \text{ s}^{-1}$, and is accompanied by heme a_3 relaxation but not by CO rebinding to heme a_3 .^{7-8,10} Rapid recombination to heme a_3 can be enhanced by inhibiting ligand movement away from the copper atom by placing diffusional barriers and by removing steric restrictions directly adjacent to the heme a_3 Fe atom. It is also expected that transient motions of the protein are required to allow ligand access to the heme a_3 Fe and net dissociation from Cu_B to the surroundings. On the basis of the above analysis we postulate that the local protein environment around Cu_B atom directs the thermal dissociated ligand from 5 to 750 us away from the heme a_3 -Cu_B pocket, thus preventing it from recombining to the heme a_3 site concurrently with its release from Cu_B (see below). Thus, the heme a_3 -Cu_B pocket is constructed in such a manner that facilitates rapid migration of the photodissociated CO from heme a_3 to Cu_B and slow recombination of CO to heme a_3 .

The cbb_3 is the first heme-copper oxidase reported in which the decay of the Cu_B-CO complex is accompanied by the formation of the Fe-CO complex at room temperature. It is also the only oxidase with an open heme-copper structure lacking the α -form of the heme, thus the distal interactions due to Cu_B and its local environment, and also lacking the hydrogen bonding between the farnesyl hydroxyl and the tyrosine hydroxyl which couples together the heme a_3 and Cu_B. The rates for the Cu_B-CO dissociation and heme b_3 -CO recombination we have determined in this study suggest that the rate-limiting step for the heme b_3 recombination of CO, in contrast to that for aa_3 and bo_3 , is the $t_{1/2}$ of the Cu_B-CO complex. Although the heme b_3 -Cu_B pocket is more open than the heme a_3 -Cu_B, the recombination process is faster and is triggered by the decay of the Cu_B-CO complex and without a lag phase. If the structural differences in the binuclear center of cbb_3 are a reflection of the kinetic data we have observed, then data on the photodynamics of cbb_3 -CO at earlier times ($t_d < 5 \mu s$) could be important for elucidating the mechanism for ligand entry/exit in heme-copper oxidases. Experiments on this point are in progress.

Acknowledgment. This work was supported by PENED 99 (C.V). S.S and C.V thank Sabine Gemeinhard for her help in the isolation of the enzyme. A.U. thanks EMBO for a fellowship (ALTF-70-98).

References

- (a) Saraste, M. *Q. Rev. Biophys.* **1990**, *23*, 331–336. (b) Urbani, A.; Gemeinhardt, S.; Warne, A.; Saraste, M. FEBS Lett. **2001**, *508*, 29–35. (1)
- (a) García-Horsman, J. A.; Berry, E.; Shapleigh, J. P.; Alben, J. O.; Gennis,
 R. B. *Biochemistry* **1994**, *33*, 3113–3119. (b) Varotsis, C.; Babcock, G.
 T.; Garcia-Horsman, A.; Gennis, R. B. *J. Phys. Chem.* **1995**, *99*, 16817– 16820.
- (3) Wang, J.; Gray, K. A.; Daldal, F.; Rousseau, D. L. J. Am. Chem. Soc. 1995, 117, 9363–9364.
- (4) Park, S.; Pan, L.-P.; Chan, S. I.; Alben, J. Biophys. J. 1996, 71, 1036-1047
- (5) Iwase, T.; Varotsis, C.; Shinzawa-Itoh, K.; Yoshikawa, S.; Kitagawa, T. J. Am. Chem. Soc. 1999, 121, 1415-1416.
- (6) Puustinen, A.; Bailey, J. A.; Dyer, R. B.; Mecklenberg, S. L.; Wikstrom,
- (6) Fuldsment, A., Danley, J. A., Dyer, R. D., Mcerchenberg, S. L., Wischoff, M., Woodruff, W. H. Biochemistry **1997**, *36*, 13195–13200.
 (7) Dyer, R. B.; Einarsdótirr, O.; Killough, P. M.; Lopez-Garriga, J. J.; Woodruff, W. H. *J. Am. Chem. Soc.* **1989**, *111*, 7657–7659.
 (8) Dyer, R. B.; Peterson, K. A.; Stoutland, P. O.; Woodruff, W. H. Biochemistry **1994**, *33*, 500–507.
 (9) Den B. C. W. M. W. Carris, D. D. Ward, M. M. K. M. Biochemistry **1994**, *33*, 500–507.
- Lemon, D. D.; Calhoun, M. W.; Gennis, R. B.; Woodruff, W. H. Biochemistry 1993, 32, 11953-11956.
- (10) (a) Woodruff, W. H. J. Bioenerg. Biomembr. 1993, 25, 177–188. (b) Woodruff, W. H.; Einarsdótirr, O.; Dyer, R. B.; Bagley, K. A.; Palmer, G.; Atherton, S. J.; Goldberck, R. A.; Dawes, T. D.; Kliger, D. S. Proc. Natl. Acad. Sci. U.S.A. 1988, 88, 2588-2564.
- (11) Rost, B.; Behr, J.; Hellwig, P.; Richter O.-M. H.; Ludwig, B.; Michel,
- (11) Rost, D., Belli, J., Heltwig, T., Rething, T., Rething, T., Balwg, B., Heltel, H.; Mäntele, W. Biochemistry 1998, 38, 7565–7571.
 (12) Varotsis, C.; Vamvouka, M. J. Phys. Chem. 1998, 102, 7670–7673.
 (13) Mitchell, D. M.; Shapleigh, J. P.; Archer A. M.; Alben, J. O.; Gennis R. B. Biochemistry 1996, 35, 9446–9450.
- (14) Wang, J.; Takahashi, S.; Hosler, P. H.; Mitchell, D. M.; Ferguson-Miller,
- S.; Gennis R. B.; Rousseau, D. L. Biochemistry 1995, 34, 9819-9825. (15) Alben, J. O.; Moh, P. P.; Fiamingo, F. G.; Altschuld, R. A. Proc. Natl.
- Acad. Sci. U.S.A. **1981**, 78, 234–237. (16) Findsen, E. W.; Centeno, J.; Balcock, G. T.; Ondrias, M. R. J. Am. Chem. Soc. 1987, 109, 5367-5372
- (17) Schelvis, J. P. M.; Deinum, G.; Varotsis, C.; Ferguson-Miller, S.; Babcock, G. T. J. Am. Chem. Soc. 1997, 119, 8409-8416.

JA0169825